Using Dirichlet Gaussian Processes to Analyze Gene Expression of Cancer Metastasis Progression

Perla Molina BEEHIVE Lab Autumn 2023

Introduction

It's me!

Perla Molina

- First Year PhD in DBDS
- Bachelor's in Data Science at USF
 - DaVita Internship
 - **AWM President**
- Why Stanford?
 - Easy move
 - Meaningful research
 - Data science realm

- Research interests
 - Cancer and disease
 - gynecology/women's health
- Obsessed with kpop and horror movies

Background Info + Material

The Biological Problem

Cancer metastasis is the cause of death for $50-90\% \rightarrow$ no current therapies to specifically target metastasis [2] \rightarrow the need to look at metastatic data

Understanding genetic dynamics of cancer metastasis remains incomplete $[2] \rightarrow$ lots of undiscovered territories, especially with progression over time

Previous computational analysis reveals "an ordered series of immunological changes that correspond to metastatic progression" [2] \rightarrow importance of looking at differential changes at molecular and genetic levels \rightarrow potential for target-based therapies

Stanford | MEDICINE

What is DP_GP?

- Bayesian nonparametric model for time series trajectories [1]
 - P is the number of genes
 - T the number of time points per sample, assuming observations at the same time points across samples, but allowing for missing observations (missing data)
- Bayesian part → probabilistic framework that can analyze uncertainty
- "DP clusters the trajectories of gene expression levels across time, where the trajectories are modeled using a Gaussian process." [1]

$$Y \in \mathbb{R}^{P \times T}$$

$$G \sim DP(\alpha, G_0);$$

$$\theta_h \sim G$$
;

$$y_j \sim p(\cdot|\theta_h)$$
.

Why DP_GP?

Benefit: Do not have to assume the given number of clusters at beginning, a priori [1] (other methods mostly do) \rightarrow huge benefit for analyzing differential growth over time

Benefit: Does not assume independence of clusters (like k-Means, hierarchical clustering, etc) \rightarrow important in clustering gene expression over period of time

Objectives

My Task

- Learn how DP_GP works
- Update and install DP_GP software
- Extract, preprocess, and format data
 - Look at top 3 and lowest 2 frequent cell types
- Analyze gene expression of metastatic lung cancer in mice over time using DP_GP

Methodology

Study Design

Wet lab _____

What I Used

- R
- Extract data for each cell type
- Format by individual timepoints
 - Sum counts of each replicate & timepoint
- Preprocess & select significant genes
 - CPM value threshold >= 10 [3]
 - Log2 fold change threshold >= 4 and adjusted Wilcox p-value < 0.01 [4][5]
 - Bonferroni correction
- Normalize significant genes
 - Average the sums of replicates for each time point
 - Z-score normalization
- Python
 - Fix & update outdated code
 - Install updated DP_GP
 - Run DP_GP on final output data from R (45 iterations per cell type dataset)

Results

Top & Lowest Frequent Cell Types

Top 3

```
CellType Freq
neu 24017
alv_mac 16593
b 10111
```

Lowest 2

```
CellType Freq
ILC2 683
dc_ccr7 505
```

- neu = Neutrophil cells
- alv_mac = Alveolar macrophages
- b = B lymphocyte cells
- ILC2 = Type 2 InnateLymphoid Cells
- dc_ccr7 = CCR7+Dendritic cells

Top & Lowest Frequent Cell Types Over Time

DP_GP Gene Expression for Neutrophil Cells

9 10 11 12 13 14

cluster mean ± 2 x std. dev

0 6 7 8 9 10 11 12 13 14

individual gene trajectory

0 6 7 8 9 10 11 12 13 14

Closer Look at Neutrophil Cells Over Time

Neutrophil Cell Frequency Over Time

DP_GP Iteration Results for Neutrophil Cells

DP_GP Gene Expression for Alveolar Macrophages

Closer Look at Alveolar Macrophages Over Time

DP_GP Iteration Results for Alveolar Macrophages

DP_GP Gene Expression for B Lymphocytes

Closer Look at B Lymphocytes

DP_GP Iteration Results for B Lymphocytes

DP_GP Gene Expression for Type 2 Innate Lymphoid Cells

Closer Look at Type 2 Innate Lymphoid Cells

DP_GP Iteration Results for Type 2 Innate Lymphoid Cells

DP_GP Gene Expression for CCR7+ Dendritic Cells

Closer Look at CCR7+ Dendritic Cells

DP_GP Iteration Results for CCR7+ Dendritic Cells

Benefit of DP_GP Clustering

Conclusions + Implications

Key Conclusions + (Possible) Implications

Conclusion	Implication
Correlations between gene expression and number of cells over time	More cells increases gene expression \rightarrow connections between up-down regulation and frequency of cell type \rightarrow potential for target-based therapies and indications for dosages
Most frequent cells were related to immunity/immune-response functions	The body does try its best to combat cancer, but still didn't fully perform its job → potential for target-based therapies & research for cell-cell interactions in cancer metastasis
Key spikes of gene expression at certain time points	Relativity to the progression of illness (i.e. extreme gene expression (up or down-reg) correspond to specific cycles or pathways of cancer) → potential for outcomes research (pinpoint time of cancer progression that is the worst/least worst) OR unknown issue during data collection in lab

Key Conclusions + (Possible) Implications

Conclusion	Implication
Number of clusters increased with the less frequent cell types	Less frequent clusters have extreme variability and uncertainty → rare cell types or possible "by-stander" cells in cancer progression → less certain about their purpose and importance → optimization problems and possible indication of cancer progression having less impact on gene expression for these specific cell types
Overall optimal number of clusters ~<10	DP_GP will need to be iterated more to condense clusters

Challenges & Opportunities

Challenges

- Updating DP GP code
- Extracting and formatting data
- Figuring out the best statistical thresholds
- Adjusting to grad school life right after undergrad (balancing classes and research)

Opportunities (What I Learned)

- The importance of making user-friendly and up-to-date code/software/methods
- The endless possibilities of research in gene expression alone and the various different ways to analyze it

Developed an interest in RNA-seq

analysis/research

Fixing any old code

If I Had More Time

- Analyze all cell types from the data (17 total)
- Combat the memory issues to run more iterations → better clusters
- Run a DP_GP analysis on immune-response cells vs non-immune-response
- Find a way to collectively run DP_GP on the entire dataset (not just individual cell types)
- Conduct cross-validation techniques or methods for gene expression results
- Improve DP_GP software to efficiently work with single cell data (initially used to analyze bacterial growth)

References

References

[1] McDowell IC, Manandhar D, Vockley CM, Schmid AK, Reddy TE, et al. (2018) Clustering gene expression time series data using an infinite Gaussian process mixture model. PLOS Computational Biology 14(1): e1005896. https://doi.org/10.1371/journal.pcbi.1005896.

[2] McGinnis, Christopher S., et al. "The Temporal Progression of Immune Remodeling during Metastasis." bioRxiv, Cold Spring Harbor Laboratory, 1 Jan. 2023, www.biorxiv.org/content/10.1101/2023.05.04.539153v1.

[3] Law, Charity. RNA-Seqbasics: From Reads to Differential Expression - Github Pages, combine-australia.github.io/RNAseq-R/slides/RNASeq basics.pdf.

[4] McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics. 2009 Mar 15;25(6):765-71. doi: 10.1093/bioinformatics/btp053. Epub 2009 Jan 28. PMID: 19176553; PMCID: PMC2654802.

[5] "Lab #5 Differential Expression." Data Analysis, www.bioconductor.org/help/course-materials/2015/Uruguay2015/day5-data_analysis.html.

Q&A + Acknowledgements

Acknowledgements

